Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1191246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516186

RESUMO

NSD3 is a member of six H3K36-specific histone lysine methyltransferases in metazoans. Its overexpression or mutation is implicated in developmental defects and oncogenesis. Aside from the well-characterized catalytic SET domain, NSD3 has multiple clinically relevant potential chromatin-binding motifs, such as the proline-tryptophan-tryptophan-proline (PWWP), the plant homeodomain (PHD), and the adjacent Cys-His-rich domain located at the C-terminus. The crystal structure of the individual domains is available, and this structural knowledge has allowed the designing of potential inhibitors, but the intrinsic flexibility of larger constructs has hindered the characterization of mutual domain conformations. Here, we report the first structural characterization of the NSD3 C-terminal region comprising the PWWP2, SET, and PHD4 domains, which has been achieved at a low resolution in solution by small-angle X-ray scattering (SAXS) data on two multiple-domain NSD3 constructs complemented with size-exclusion chromatography and advanced computational modeling. Structural models predicted by machine learning have been validated in direct space, by comparison with the SAXS-derived molecular envelope, and in reciprocal space, by reproducing the experimental SAXS profile. Selected models have been refined by SAXS-restrained molecular dynamics. This study shows how SAXS data can be used with advanced computational modeling techniques to achieve a detailed structural characterization and sheds light on how NSD3 domains are interconnected in the C-terminus.

2.
Dalton Trans ; 53(5): 2082-2097, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38180044

RESUMO

CeNiO3 has been reported in the literature in the last few years as a novel LnNiO3 compound with promising applications in different catalytic fields, but its structure has not been correctly reported so far. In this research, CeNiO3 (RB1), CeO2 and NiO have been synthesized in a nanocrystalline form using a modified citrate aqueous sol-gel route. A direct comparison between the equimolar physical mixture (n(CeO2) : n(NiO) = 1 : 1) and compound RB1 was made. Their structural differences were investigated by laboratory powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) detector, and Raman spectroscopy. The surface of the compounds was analyzed by X-ray photoelectron spectroscopy (XPS), while the thermal behaviour was explored by thermogravimetric analysis (TGA). Their magnetic properties were also investigated with the aim of exploring the differences between these two compounds. There were clear differences between the physical mixture of CeO2 + NiO and RB1 presented by all of these employed methods. Synchrotron methods, such as atomic pair distribution function analysis (PDF), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), were used to explore the structure of RB1 in more detail. Three different models for the structural solution of RB1 were proposed. One structural solution proposes that RB1 is a single-phase pyrochlore compound (Ce2Ni2O7) while the other two solutions suggest that RB1 is a two-phase system of either CeO2 + NiO or Ce1-xNixO2 and NiO.

3.
IUCrJ ; 10(Pt 5): 610-623, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668218

RESUMO

The approach based on atomic pair distribution function (PDF) has revolutionized structural investigations by X-ray/electron diffraction of nano or quasi-amorphous materials, opening up the possibility of exploring short-range order. However, the ab initio crystal structural solution by the PDF is far from being achieved due to the difficulty in determining the crystallographic properties of the unit cell. A method for estimating the crystal cell parameters directly from a PDF profile is presented, which is composed of two steps: first, the type of crystal cell is inferred using machine-learning approaches applied to the PDF profile; second, the crystal cell parameters are extracted by means of multivariate analysis combined with vector superposition techniques. The procedure has been validated on a large number of PDF profiles calculated from known crystal structures and on a small number of measured PDF profiles. The lattice determination step has been benchmarked by a comprehensive exploration of different classifiers and different input data. The highest performance is obtained using the k-nearest neighbours classifier applied to whole PDF profiles. Descriptors calculated from the PDF profiles by recurrence quantitative analysis produce results that can be interpreted in terms of PDF properties, and the significance of each descriptor in determining the prediction is evaluated. The cell parameter extraction step depends on the cell metric rather than its type. Monometric, dimetric and trimetric cells have top-1 estimates that are correct 40, 20 and 5% of the time, respectively. Promising results were obtained when analysing real nanocrystals, where unit cells close to the true ones are found within the top-1 ranked solution in the case of monometric cells and within the top-6 ranked solutions in the case of dimetric cells, even in the presence of a crystalline impurity with a weight fraction up to 40%.

4.
Nat Protoc ; 18(10): 2998-3049, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37697106

RESUMO

Monoclonal antibodies (mAbs) are commonly used biologic drugs for the treatment of diseases such as rheumatoid arthritis, multiple sclerosis, COVID-19 and various cancers. They are produced in Chinese hamster ovary cell lines and are purified via a number of complex and expensive chromatography-based steps, operated in batch mode, that rely heavily on protein A resin. The major drawback of conventional procedures is the high cost of the adsorption media and the extensive use of chemicals for the regeneration of the chromatographic columns, with an environmental cost. We have shown that conventional protein A chromatography can be replaced with a single crystallization step and gram-scale production can be achieved in continuous flow using the template-assisted membrane crystallization process. The templates are embedded in a membrane (e.g., porous polyvinylidene fluoride with a layer of polymerized polyvinyl alcohol) and serve as nucleants for crystallization. mAbs are flexible proteins that are difficult to crystallize, so it can be challenging to determine the optimal conditions for crystallization. The objective of this protocol is to establish a systematic and flexible approach for the design of a robust, economic and sustainable mAb purification platform to replace at least the protein A affinity stage in traditional chromatography-based purification platforms. The procedure provides details on how to establish the optimal parameters for separation (crystallization conditions, choice of templates, choice of membrane) and advice on analytical and characterization methods.


Assuntos
Anticorpos Monoclonais , COVID-19 , Cricetinae , Animais , Anticorpos Monoclonais/química , Cricetulus , Cristalização/métodos , Células CHO , Fluxo de Trabalho
5.
Dalton Trans ; 52(34): 11835-11849, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37581921

RESUMO

Ubiquitin signalling and metal homeostasis play key roles in controlling several physiological cellular activities, including protein trafficking and degradation. While some relationships between these two biochemical pathways have started to surface, our knowledge of their interplay remains limited. Here, we employ a variety of techniques, such as circular dichroism, differential scanning calorimetry, pressure perturbation calorimetry, fluorescence emission, SDS-PAGE, and small-angle X-ray scattering (SAXS) to evaluate the impact of Cu2+ and Zn2+ ions on the structure and stability of K48 linked diubiquitin (K48-Ub2), a simple model for polyubiquitin chains. The SAXS analysis results show that the structure of the metal-free protein is similar to that observed when the protein is bound to the E2 conjugating enzyme, lending support to the idea that the structure of unanchored K48-linked ubiquitin chains is sufficient for identification by conjugating enzymes without the need for an induced fit mechanism. Our results indicate that K48-Ub2 can coordinate up to four metal ions with both copper and zinc ions inducing slight changes to the secondary structure of the protein. However, we noted significant distinctions in their impacts on protein stability and overall architecture. Specifically, Cu2+ ions resulted in a destabilization of the protein structure, which facilitated the formation of dimer aggregates. Next, we observed a shift in the conformational dynamics of K48-Ub2 toward less compact and more flexible states upon metal ion binding, with Zn2+ inducing a more significant effect than Cu2+ ions. Our structural modelling study demonstrates that both metal ions induced perturbations in the K48-Ub2 structure, leading to the separation of the two monomers thus inhibiting interactions with E2 enzymes. In conclusion, the findings from this study enhance our comprehension of the mechanisms underlying Ub chains recognition. Moreover, they strengthen the notion that drug discovery initiatives aimed at targeting metal-mediated disruptions in Ub signaling hold great potential for treating a wide range of diseases that stem from abnormal protein accumulation.


Assuntos
Cobre , Ubiquitinas , Espalhamento a Baixo Ângulo , Modelos Moleculares , Difração de Raios X , Ubiquitinas/química , Ubiquitinas/metabolismo , Ubiquitina/metabolismo , Zinco
6.
Arch Pharm (Weinheim) ; 356(10): e2300116, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37460390

RESUMO

Long QT syndrome (LQTS) is a disorder of cardiac electrophysiology resulting in life-threatening arrhythmias; nowadays, only a few drugs are available for the management of LQTS. Focusing our attention on LQT2, one of the most common subtypes of LQTS caused by mutations in the human ether-à-go-go-related gene (hERG), in the present work, the stereoselectivity of the recently discovered mexiletine-derived urea 8 was investigated on the hERG potassium channel. According to preliminary in silico predictions, in vitro studies revealed a stereoselective behavior, with the meso form showing the greatest hERG opening activity. In addition, functional studies on guinea pig isolated left atria, aorta, and ileum demonstrated that 8 does not present any cardiac or intestinal liability in our ex vivo studies. Due to its overall profile, (R,S)-8 paves the way for the design and development of a new series of compounds potentially useful in the treatment of both congenital and drug-induced forms of LQTS.


Assuntos
Síndrome do QT Longo , Mexiletina , Humanos , Animais , Cobaias , Mexiletina/farmacologia , Simulação de Acoplamento Molecular , Ureia , Relação Estrutura-Atividade , Canais de Potássio/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia
7.
J Phys Chem B ; 127(29): 6487-6499, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37439584

RESUMO

Deep eutectic solvents (DESs) are mixtures of two or more pure compounds (e.g., Lewis or Brønsted acids and bases, anionic and/or cationic species) in a well-defined stoichiometric proportion, with a melting point lower to that of an ideal liquid mixture. These neoteric solvents are highly tunable through varying the structure or relative ratio of parent components and have been evaluated as solvents able to improve biomolecules' performance, specifically their stability and biocatalytic properties. Inspired by a recent crystallographic study, we have explored through molecular dynamics (MD) simulations the dynamic properties of two different proteins (hen egg-white lysozyme and the human VH antibody fragment HEL4) in a (20% w/w) hydrated solution of choline chloride-glycerol (1:2). We have developed proper force fields to account for DES, protein, and DES-protein interactions, which have been calibrated using pair distribution function measurements of pure DES solutions. MD results show that the presence of DES quenches the protein motion, increasing the rigidity of the overall protein structure. Specific interactions among DES components and protein residues, such as those between choline ions and two Tryptophan residues of lysozyme, may amplify the protein-DES interactions and lead to protein crystallization in the presence of hydrated DES. These findings open new horizons to improve or achieve control on protein properties by a proper choice of hydrated DESs used as solvents.


Assuntos
Muramidase , Água , Humanos , Água/química , Solventes Eutéticos Profundos , Solventes/química , Glicerol , Colina/química
8.
Protein Sci ; 32(8): e4732, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37466248

RESUMO

Human aromatic amino acid decarboxylase (AADC) is a pyridoxal 5'-phosphate-dependent enzyme responsible for the biosynthesis of dopamine and serotonin, essential neurotransmitters involved in motor and cognitive abilities. Mutations in its gene lead to AADC deficiency, a monogenic rare neurometabolic childhood parkinsonism characterized by severe motor and neurodevelopmental symptoms. Here, for the first time, we solved the crystal structure of human holoAADC in the internal aldimine (1.9 Å) and in the external aldimine (2.4 Å) of the substrate analog L-Dopa methylester. In this intermediate, the highly flexible AADC catalytic loop (CL) is captured in a closed state contacting all protein domains. In addition, each active site, composed by residues of both subunits, is connected to the other through weak interactions and a central cavity. By combining crystallographic analyses with all-atom and coarse-grained molecular dynamics simulations, SAXS investigations and limited proteolysis experiments, we realized that the functionally obligate homodimeric AADC enzyme in solution is an elongated, asymmetric molecule, where the fluctuations of the CL are coupled to flexibility at the edge between the N-terminal and C-terminal domains. The structural integrity of this peripheral protein region is essential to catalysis, as assessed by both artificial and 37 AADC deficiency pathogenic variants leading to the interpretation that structural dynamics in protein regions far from the active site is essential for CL flexibility and the acquirement of a correct catalytically competent structure. This could represent the molecular basis for pathogenicity prediction in AADC deficiency.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático , Humanos , Criança , Espalhamento a Baixo Ângulo , Difração de Raios X , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Aminoácidos
9.
Biomolecules ; 12(10)2022 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-36291703

RESUMO

The bioavailability of copper (Cu) in human cells may depend on a complex interplay with zinc (Zn) ions. We investigated the ability of the Zn ion to target the human Cu-chaperone Atox1, a small cytosolic protein capable of anchoring Cu(I), by a conserved surface-exposed Cys-X-X-Cys (CXXC) motif, and deliver it to Cu-transporting ATPases in the trans-Golgi network. The crystal structure of Atox1 loaded with Zn displays the metal ion bridging the CXXC motifs of two Atox1 molecules in a homodimer. The identity and location of the Zn ion were confirmed through the anomalous scattering of the metal by collecting X-ray diffraction data near the Zn K-edge. Furthermore, soaking experiments of the Zn-loaded Atox1 crystals with a strong chelating agent, such as EDTA, caused only limited removal of the metal ion from the tetrahedral coordination cage, suggesting a potential role of Atox1 in Zn metabolism and, more generally, that Cu and Zn transport mechanisms could be interlocked in human cells.


Assuntos
Cobre , Metalochaperonas , Humanos , Proteínas de Transporte de Cobre , Metalochaperonas/química , Metalochaperonas/metabolismo , Cobre/química , ATPases Transportadoras de Cobre , Zinco/metabolismo , Ácido Edético , Chaperonas Moleculares/metabolismo , Quelantes , Íons/metabolismo
10.
J Appl Crystallogr ; 55(Pt 4): 837-850, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974739

RESUMO

In materials and earth science, but also in chemistry, pharmaceutics and engineering, the quantification of elements and crystal phases in solid samples is often essential for a full characterization of materials. The most frequently used techniques for this purpose are X-ray fluorescence (XRF) for elemental analysis and X-ray powder diffraction (XRPD) for phase analysis. In both methods, relations between signal and quantity do exist but they are expressed in terms of complex equations including many parameters related to both sample and instruments, and the dependence on the active element or phase amounts to be determined is convoluted among those parameters. Often real-life samples hold relations not suitable for a direct quantification and, therefore, estimations based only on the values of the relative intensities are affected by large errors. Preferred orientation (PO) and microabsorption (MA) in XRPD cannot usually be avoided, and traditional corrections in Rietveld refinement, such as the Brindley MA correction, are not able, in general, to restore the correct phase quantification. In this work, a multivariate approach, where principal component analysis is exploited alone or combined with regression methods, is used on XRPD profiles collected on ad hoc designed mixtures to face and overcome the typical problems of traditional approaches. Moreover, the partial or no known crystal structure (PONKCS) method was tested on XRPD data, as an example of a hybrid approach between Rietveld and multivariate approaches, to correct for the MA effect. Particular attention is given to the comparison and selection of both method and pre-process, the two key steps for good performance when applying multivariate methods to obtain reliable quantitative estimations from XRPD data, especially when MA and PO are present. A similar approach was tested on XRF data to deal with matrix effects and compared with the more classical fundamental-parameter approach. Finally, useful indications to overcome the difficulties of the general user in managing the parameters for a successful application of multivariate approaches for XRPD and XRF data analysis are given.

11.
Nat Commun ; 13(1): 3976, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803933

RESUMO

Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed. Inspired by such approach, we demonstrate the use of CsPbCl3 perovskite nanocrystals to drive the phase-selective synthesis of two yet unexplored lead sulfochlorides: Pb3S2Cl2 and Pb4S3Cl2. When homogeneously nucleated in solution, lead sulfochlorides form Pb3S2Cl2 nanocrystals. Conversely, the presence of CsPbCl3 triggers the formation of Pb4S3Cl2/CsPbCl3 epitaxial heterostructures. The phase selectivity is guaranteed by the continuity of the cationic subnetwork across the interface, a condition not met in a hypothetical Pb3S2Cl2/CsPbCl3 heterostructure. The perovskite domain is then etched, delivering phase-pure Pb4S3Cl2 nanocrystals that could not be synthesized directly.

12.
Front Mol Biosci ; 9: 823174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480889

RESUMO

Rituximab, a murine-human chimera, is the first monoclonal antibody (mAb) developed as a therapeutic agent to target CD20 protein. Its Fab domain and its interaction with CD20 have been extensively studied and high-resolution atomic models obtained by X-ray diffraction or cryo-electron microscopy are available. However, the structure of the full-length antibody is still missing as the inherent protein flexibility hampers the formation of well-diffracting crystals and the reconstruction of 3D microscope images. The global structure of rituximab from its dilute solution is here elucidated by small-angle X-ray scattering (SAXS). The limited data resolution achievable by this technique has been compensated by intensive computational modelling that led to develop a new and effective procedure to characterize the average mAb conformation as well as that of the single domains. SAXS data indicated that rituximab adopts an asymmetric average conformation in solution, with a radius of gyration and a maximum linear dimension of 52 Å and 197 Å, respectively. The asymmetry is mainly due to an uneven arrangement of the two Fab units with respect to the central stem (the Fc domain) and reflects in a different conformation of the individual units. As a result, the Fab elbow angle, which is a crucial determinant for antigen recognition and binding, was found to be larger (169°) in the more distant Fab unit than that in the less distant one (143°). The whole flexibility of the antibody has been found to strongly depend on the relative inter-domain orientations, with one of the Fab arms playing a major role. The average structure and the amount of flexibility has been studied in the presence of different buffers and additives, and monitored at increasing temperature, up to the complete unfolding of the antibody. Overall, the structural characterization of rituximab can help in designing next-generation anti-CD20 antibodies and finding more efficient routes for rituximab production at industrial level.

13.
J Am Chem Soc ; 144(11): 5059-5066, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258285

RESUMO

CsPbBr3 nanoclusters have been synthesized by several groups and mostly employed as single-source precursors for the synthesis of anisotropic perovskite nanostructures or perovskite-based heterostructures. Yet, a detailed characterization of such clusters is still lacking due to their high instability. In this work, we were able to stabilize CsPbBr3 nanoclusters by carefully selecting ad hoc ligands (benzoic acid together with oleylamine) to passivate their surface. The clusters have a narrow absorption peak at 400 nm, a band-edge emission peaked at 410 nm at room temperature, and their composition is identified as CsPbBr2.3. Synchrotron X-ray pair distribution function measurements indicate that the clusters exhibit a disk-like shape with a thickness smaller than 2 nm and a diameter of 13 nm, and their crystal structure is a highly distorted orthorhombic CsPbBr3. Based on small- and wide-angle X-ray scattering analyses, the clusters tend to form a two-dimensional (2D) hexagonal packing with a short-range order and a lamellar packing with a long-range order.

14.
Angew Chem Int Ed Engl ; 61(22): e202201747, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226780

RESUMO

Here we present a colloidal approach to synthesize bismuth chalcohalide nanocrystals (BiEX NCs, in which E=S, Se and X=Cl, Br, I). Our method yields orthorhombic elongated BiEX NCs, with BiSCl crystallizing in a previously unknown polymorph. The BiEX NCs display a composition-dependent band gap spanning the visible spectral range and absorption coefficients exceeding 105  cm-1 . The BiEX NCs show chemical stability at standard laboratory conditions and form colloidal inks in different solvents. These features enable the solution processing of the NCs into robust solid films yielding stable photoelectrochemical current densities under solar-simulated irradiation. Overall, our versatile synthetic protocol may prove valuable in accessing colloidal metal chalcohalide nanomaterials at large and contributes to establish metal chalcohalides as a promising complement to metal chalcogenides and halides for applied nanotechnology.

15.
Nutrients ; 13(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960096

RESUMO

The term social jetlag is used to describe the discrepancy between biological time, determined by our internal body clock, and social times, mainly dictated by social obligations such as school or work. In industrialized countries, two-thirds of the studying/working population experiences social jetlag, often for several years. Described for the first time in 2006, a considerable effort has been put into understanding the effects of social jetlag on human physiopathology, yet our understanding of this phenomenon is still very limited. Due to its high prevalence, social jetlag is becoming a primary concern for public health. This review summarizes current knowledge regarding social jetlag, social jetlag associated behavior (e.g., unhealthy eating patterns) and related risks for human health.


Assuntos
Transtornos Cronobiológicos/fisiopatologia , Transtornos Cronobiológicos/psicologia , Ritmo Circadiano/fisiologia , Saúde , Transtornos Cronobiológicos/etiologia , Comportamento Alimentar , Feminino , Humanos , Conhecimento , Estilo de Vida , Masculino , Saúde Pública , Risco , Instituições Acadêmicas , Sono , Comportamento Social , Fatores de Tempo , Trabalho
16.
Inorg Chem ; 60(9): 6349-6366, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33856202

RESUMO

Anionic complexes having vapochromic behavior are investigated: [K(H2O)][M(ppy)(CN)2], [K(H2O)][M(bzq)(CN)2], and [Li(H2O)n][Pt(bzq)(CN)2], where ppy = 2-phenylpyridinate, bzq = 7,8-benzoquinolate, and M = Pt(II) or Pd(II). These hydrated potassium/lithium salts exhibit a change in color upon being heated to 380 K, and they transform back into the original color upon absorption of water molecules from the environment. The challenging characterization of their structure in the vapochromic transition has been carried out by combining several experimental techniques, despite the availability of partially ordered and/or impure crystalline material. Room-temperature single-crystal and powder X-ray diffraction investigation revealed that [K(H2O)][Pt(ppy)(CN)2] crystallizes in the Pbca space group and is isostructural to [K(H2O)][Pd(ppy)(CN)2]. Variable-temperature powder X-ray diffraction allowed the color transition to be related to changes in the diffraction pattern and the decrease in sample crystallinity. Water loss, monitored by thermogravimetric analysis, occurs in two stages, well separated for potassium Pt compounds and strongly overlapped for potassium Pd compounds. The local structure of potassium compounds was monitored by in situ pair distribution function (PDF) measurements, which highlighted changes in the intermolecular distances due to a rearrangement of the crystal packing upon vapochromic transition. A reaction coordinate describing the structural changes was extracted for each compound by multivariate analysis applied to PDF data. It contributed to the study of the kinetics of the structural changes related to the vapochromic transition, revealing its dependence on the transition metal ion. Instead, the ligand influences the critical temperature, higher for ppy than for bzq, and the inclination of the molecular planes with respect to the unit cell planes, higher for bzq than for ppy. The first stage of water loss triggers a unit cell contraction, determined by the increase in the b axis length and the decrease in the a (for ppy) or c (for bzq) axis lengths. Consequent interplane distance variations and in-plane roto-translations weaken the π-stacking of the room-temperature structure and modify the distances and angles of Pt(II)/Pd(II) chains. The curve describing the intermolecular Pt(II)/Pd(II) distances as a function of temperature, validated by X-ray absorption spectroscopy, was found to reproduce the coordinate reaction determined by the model-free analysis.

17.
Sci Rep ; 11(1): 4312, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619313

RESUMO

The beneficial effects of Cyclooxygenases (COX) inhibitors on human health have been known for thousands of years. Nevertheless, COXs, particularly COX-1, have been linked to a plethora of human diseases such as cancer, heart failure, neurological and neurodegenerative diseases only recently. COXs catalyze the first step in the biosynthesis of prostaglandins (PGs) and are among the most important mediators of inflammation. All published structural work on COX-1 deals with the ovine isoenzyme, which is easier to produce in milligram-quantities than the human enzyme and crystallizes readily. Here, we report the long-sought structure of the human cyclooxygenase-1 (hCOX-1) that we refined to an R/Rfree of 20.82/26.37, at 3.36 Å resolution. hCOX-1 structure provides a detailed picture of the enzyme active site and the residues crucial for inhibitor/substrate binding and catalytic activity. We compared hCOX-1 crystal structure with the ovine COX-1 and human COX-2 structures by using metrics based on Cartesian coordinates, backbone dihedral angles, and solvent accessibility coupled with multivariate methods. Differences and similarities among structures are discussed, with emphasis on the motifs responsible for the diversification of the various enzymes (primary structure, stability, catalytic activity, and specificity). The structure of hCOX-1 represents an essential step towards the development of new and more selective COX-1 inhibitors of enhanced therapeutic potential.


Assuntos
Ciclo-Oxigenase 1/química , Modelos Moleculares , Conformação Proteica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Estabilidade Enzimática , Glicosilação , Humanos , Estrutura Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes , Ovinos , Solventes , Relação Estrutura-Atividade , Especificidade por Substrato
18.
ACS Med Chem Lett ; 11(5): 869-876, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435398

RESUMO

Acetylcholinesterase (AChE) inhibitors (AChEIs) still remain the leading therapeutic options for the symptomatic treatment of cognitive deficits associated with mild-to-moderate Alzheimer's disease. The search for new AChEIs benefits from well-established knowledge of the molecular interactions of selective AChEIs, such as donepezil and related dual binding site inhibitors. Starting from a previously disclosed coumarin-based inhibitor (±)-cis-1, active as racemate in the nanomolar range toward AChE, we proceeded on a double track by (i) achieving chiral resolution of the enantiomers of 1 by HPLC and (ii) preparing two close achiral analogues of 1, i.e., compounds 4 and 6. An eudismic ratio as high as 20 was observed for the (-) enantiomer of cis-1. The X-ray crystal structure of the complex between the (-)-cis-1 eutomer (coded as MC1420) and T. californica AChE was determined at 2.8 Å, and docking calculation results suggested that the eutomer in (1R,3S) absolute configuration should be energetically more favored in binding the enzyme than the eutomer in (1S,3R) configuration. The achiral analogues 4 and 6 were less effective in inhibiting AChE compared to (±)-cis-1, but interestingly butylamide 4 emerged as a potent inhibitor of butyrylcholinesterase (BChE).

19.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500118

RESUMO

Cancer cells cope with high oxidative stress levels, characterized by a shift toward the oxidized form (GSSG) of glutathione (GSH) in the redox couple GSSG/2GSH. Under these conditions, the cytosolic copper chaperone Atox1, which delivers Cu(I) to the secretory pathway, gets oxidized, i.e., a disulfide bond is formed between the cysteine residues of the Cu(I)-binding CxxC motif. Switching to the covalently-linked form, sulfur atoms are not able to bind the Cu(I) ion and Atox1 cannot play an antioxidant role. Atox1 has also been implicated in the resistance to platinum chemotherapy. In the presence of excess GSH, the anticancer drug cisplatin binds to Cu(I)-Atox1 but not to the reduced apoprotein. With the aim to investigate the interaction of cisplatin with the disulfide form of the protein, we performed a structural characterization in solution and in the solid state of oxidized human Atox1 and explored its ability to bind cisplatin under conditions mimicking an oxidizing environment. Cisplatin targets a methionine residue of oxidized Atox1; however, in the presence of GSH as reducing agent, the drug binds irreversibly to the protein with ammine ligands trans to Cys12 and Cys15. The results are discussed with reference to the available literature data and a mechanism is proposed connecting platinum drug processing to redox and copper homeostasis.


Assuntos
Cisplatino/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Glutationa/metabolismo , Chaperonas Moleculares/metabolismo , Oxirredução , Cisplatino/química , Cobre/metabolismo , Proteínas de Transporte de Cobre/química , Dissulfetos/química , Glutationa/química , Humanos , Metalochaperonas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Ligação Proteica , Conformação Proteica , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral
20.
J Am Chem Soc ; 141(30): 12109-12120, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283225

RESUMO

Copper (Cu) is required for maturation of cuproenzymes, cell proliferation, and angiogenesis, and its transport entails highly specific protein-protein interactions. In humans, the Cu chaperone Atox1 mediates Cu(I) delivery to P-type ATPases Atp7a and Atp7b (the Menkes and Wilson disease proteins, respectively), which are responsible for Cu release to the secretory pathway and excess Cu efflux. Cu(I) handover is believed to occur through the formation of three-coordinate intermediates where the metal ion is simultaneously linked to Atox1 and to a soluble domain of Cu-ATPases, both sharing a CxxC dithiol motif. The ultrahigh thermodynamic stability of chelating S-donor ligands secures the redox-active and potentially toxic Cu(I) ion, while their kinetic lability allows facile metal transfer. The same CxxC motifs can interact with and mediate the biological response to antitumor platinum drugs, which are among the most used chemotherapeutics. We show that cisplatin and an oxaliplatin analogue can specifically bind to the heterodimeric complex Atox1-Cu(I)-Mnk1 (Mnk1 is the first soluble domain of Atp7a), thus leading to a kinetically stable adduct that has been structurally characterized by solution NMR and X-ray crystallography. Of the two possible binding configurations of the Cu(I) ion in the cage made by the CxxC motifs of the two proteins, one (bidentate Atox1 and monodentate Mnk1) is less stable and more reactive toward cis-Pt(II) compounds, as shown by using mutated proteins. A Cu(I) ion can be retained at the Pt(II) coordination site but can be released to glutathione (a physiological thiol) or to other complexing agents. The Pt(II)-supported heterodimeric complex does not form if Zn(II) is used in place of Cu(I) and transplatin instead of cisplatin. The results indicate that Pt(II) drugs can specifically affect Cu(I) homeostasis by interfering with the rapid exchange of Cu(I) between Atox1 and Cu-ATPases with consequences on cancer cell viability and migration.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Proteínas de Transporte de Cobre/antagonistas & inibidores , ATPases Transportadoras de Cobre/antagonistas & inibidores , Cobre/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Oxaliplatina/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Antineoplásicos/química , Cisplatino/química , Proteínas de Transporte de Cobre/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Estrutura Molecular , Oxaliplatina/química , Fragmentos de Peptídeos/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...